Life-Time Value Modeling of Big-ticket Items

Bruce Ratner PhD

DM STAT-1 CONSULTING

Objective

- To build a LTV5 Model based on sales transaction data from Dec., 2006 – Dec., 2011
- The window of Sep '08 Aug '10 is for defining the ATTRITION and LVT5 variables

ATTRITION = 1 if there are no sales in the monthly window = 0 if there is at least one sale in the mos wndw LTV5 = LVT2*2.5 where LTV2 = total sales in the mos wndw

- In addition to monthly sales, which reflect few big-ticket items and many \$0s, the three basic variables are also put in play for machine-learning data mining (Predictors are defined in Dec '06 – Aug '08):
- RECENCY = last month in which a sale occurrence was observed for a rep.
- 2. TRX = total number of monthly sales transactions observed
- BEGYR = first year in which a sales occurrence was observed

Identification of the Relationships that Define Attrition(=1-Retention) and LTV5

 Machine-learning data mining identifies surprising relationships


```
x1 = TRX;

x2 = begyr;

x1= x1 * x2;

x2 = Recency;

If x1 NE 0 Then x1 = x2 / x1; Else x1 = 1;

GenlQvar = x1;

GenlQ_ATTRITION_probability = 1 / (1 + Exp(-(-1.681222 + GenlQvar * 2.162148)));
```


Identification of the Relationships that Define Attrition(=1-Retention) and LTV5

Estimating the vars, we have

```
Logit_ATTRITION = -3.8434 + (2.1622*ATTRITION_var)

PROB_ATTRIT_est = exp(Logit_ATTRITION)/(1+ exp(Logit_ATTRITION))

LTV5_var = (TRX*BEGYR)/RECENCY

LTV5_estimate = 92986 + (10.44172*LTV5_var)
```

Applying the attrition factor to the LTV5 score, and performing a decile analysis, I have:

PROB_RETENTION_X_LTV5_estimate

DECILE	NUMBER OF	TOTAL LTV5_X_Prob_RETENTION	DECILE INDIVIDUALS LTV5_X_Prob_RETENTION	C U M INDIVIDUALS LTV5_X_Prob_RETENTION	C U M
top	314	\$232,710,018	\$741,115	\$741,115	250
2	314	\$213,618,166	\$680,313	\$710,714	240
3	314	\$163,741,817	\$521,471	\$647,633	219
4	315	\$104,534,666	\$331,856	\$568,500	192
5	314	\$65,088,053	\$207,287	\$496,303	168
6	314	\$43,271,710	\$137,808	\$436,586	147
7	315	\$32,566,870	\$103,387	\$388,878	131
8	314	\$25,824,931	\$82,245	\$350,579	118
9	314	\$24,618,194	\$78,402	\$320,359	108
bottom	314	\$24,618,194	\$78,402	\$296,178	100
	3,142	\$930,592,619			

Any Questions?

Please contact me.

Statistical and Machine-Learning Data Mining

Techniques for Better Predictive Modeling and Analysis of Big Data

Second Edition

תודה Dankie Gracias Спасибо Köszönjük Гäname t 感謝您 Obrigado Σας Ευχαριστούμ Bedankt Děkujeme vám ありがとうございます **Tack**